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Abstract
The enlargement of ventricular volume is a general trend in the elderly, especially in patients with Alzheimer’s disease (AD). 
Multiple susceptibility loci have been reported to have an increased risk for AD and the morphology of brain structures are 
affected by the variations in the risk loci. Therefore, we hypothesized that genes contributed significantly to the ventricular 
surface, and the changes of ventricular surface were associated with the impairment of cognitive functions. After the qual-
ity controls (QC) and genotyping, a lateral ventricular segmentation method was employed to obtain the surface features 
of lateral ventricle. We evaluated the influence of 18 selected AD susceptibility loci on both volume and surface morphol-
ogy across 410 subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI). Correlations were conducted between 
radial distance (RD) and Montreal Cognitive Assessment (MoCA) subscales. Only the C allele at the rs744373 loci in BIN1 
gene significantly accelerated the atrophy of lateral ventricle, including the anterior horn, body, and temporal horn of left 
lateral ventricle. No significant effect on lateral ventricle was found at other loci. Our results revealed that most regions of 
the bilateral ventricular surface were significantly negatively correlated with cognitive scores, particularly in delayed recall. 
Besides, small areas of surface were negatively correlated with language, orientation, and visuospatial scores. Together, 
our results indicated that the genetic variation affected the localized areas of lateral ventricular surface, and supported that 
lateral ventricle was an important brain structure associated with cognition in the elderly.
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Introduction

Alzheimer’s disease (AD) is the most common neurode-
generative disease in elderly, which is characterized by 
the progressive decline of memory and cognition (Asso-
ciation 2019). With the accelerated process of the ageing 
population, there has been a rapid increase in the number of 
AD patients. The estimated number of AD patients would 
grow to 130 million by 2050 (Shah et al. 2016). Structural 
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magnetic resonance imaging (MRI) has been applied in 
cognitive neuroscience as a stabilization tool, which has 
an ability to describe the high-resolution neuroanatomical 
information across the brain. Morphological changes of the 
brain in AD patients are well-recognized, including the hip-
pocampus (Apostolova et al. 2012), amygdala (Poulin et al. 
2011), ventricle (Apostolova et al. 2012), and the cortex 
(Frisoni et al. 2007). Both volume and surface have persis-
tent changes and are considered as reliable biomarkers for 
predicting the incipient AD in mild cognitive impairment 
(MCI) patients (Guo et al. 2020; Ewers et al. 2012).

Lateral ventricle is a C-shaped cavity locates in the deep 
brain (Rhoton 2002) and can be divided into four subre-
gions: anterior horn, body, occipital horn, and temporal horn 
(Barami et al. 2009). Current theory suggests that cerebro-
spinal fluid (CSF) Aβ-42, total tau, and phosphor-tau181 
are the main available AD biomarkers for clinical diagnosis 
(Veitinger et al. 2014), and CSF is secreted in the ventri-
cle (Alimajstorovic et al. 2020). The enlargement of lateral 
ventricular volume is a common pathological change in 
patients with AD, which is caused by the shrinkage of brain 
parenchymal and abnormal build-up of CSF (Apostolova 
et al. 2012; Bae et al. 2019). Specifically, the annual rate 
of expansion in ventricular volume was about 9% in AD 
patients, while 2% in healthy elderly (de Leon et al. 1989). 
The volume-based approach can reflect the overall change 
and the surface-based method can describe deformation 
detail of surface (Gutman et al. 2013; Wang et al. 2009; 
Shi et al. 2015). The surface-based method could facilitate 
further studies on the interactions between lateral ventricle 
and surrounding structures.

Genetic studies have identified that many genes were 
associated with the AD. Large scale genome-wide associ-
ated studies (GWAS) have revealed several AD genetic risk 
factors, such as ApoE, CLU, CR1, CD33, BIN1, PICALM, 
CD2AP, NYAP1, and others (Karch and Goate 2015; 
Lambert et al. 2013; Bertram et al. 2008; Beecham et al. 
2009; Kunkle et al. 2019). Some susceptibility loci (ApoE, 
rs983392 within MS4A6A, rs11218343 within SOLR1, 
rs6733839 within BIN1, etc.) were found to be associated 
with MRI measures (cortical thickness, cortical surface area, 
and cortical volumes, subcortical structure volume, etc.) (Li 
et al. 2017; Chauhan et al. 2015; van der Meer et al. 2020; 
Grasby et al. 2020; Hofer et al. 2020) and brain metabolism 
(Stage et al. 2016), while the relationship between surface 
morphological changes and AD risk allele was relatively less 
to be reported. Some researches demonstrated that greater 
deformation of the hippocampal morphometry was observed 
when comparing ApoE E4 heterozygotes and homozygotes 
with non-carriers in longitudinal datasets (Crivello et al. 
2010), especially the left hippocampus (Li et al. 2016). 
Previous studies have investigated the effects of ApoE E4 
and CLU (rs11136000 and rs1532278) loci on ventricular 

expansion (Roussotte et al. 2014a, b). Their results indicated 
that these risk alleles were related to the faster ventricular 
expand bilaterally, and the effect of genes on the lateral ven-
tricular surface was regionalized.

The lateral ventricle is one of the most affected anatomi-
cal structures in the development of AD, but most of the 
previous studies focused on the hippocampus, amygdala, 
and parietal lobe, etc. We speculated that risk genes would 
strongly influence the ventricular morphology and accelerate 
the development of AD. The lateral ventricle as a cavity has 
no responsible cognitive function, but it is highly correlated 
with changes in surrounding structures, such as hippocam-
pus, thalamus, etc. Therefore, the relationship between lat-
eral ventricular surface and cognitive function indirectly 
reflects the role of adjacent structures in different cognitive 
functions. In this study, volume-based analysis was used to 
detect the overall change of ventricular morphology, and 
the ventricular morphometry analysis system (VMAS) was 
used to assess the deformation detail of ventricular surface. 
Besides, we calculated the correlations between morpho-
logical features of lateral ventricular surface and Montreal 
Cognitive Assessment (MoCA) subscales. To sum up, the 
present study had two main purposes. First, to evaluate the 
presence of the risk allele that significantly affected the lat-
eral ventricular morphology in 18 selected susceptibility 
loci in the elderly. Second, the relationship between adja-
cent structures of lateral ventricles and different cognitive 
functions was investigated.

Experimental procedures

Alzheimer’s disease neuroimaging initiative

Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public–private partnership, led by 
Principal Investigator Michael W. Weiner, MD. The primary 
goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET), 
other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression 
of mild cognitive impairment (MCI) and early Alzheimer’s 
disease (AD). For up-to-date information, see www. adni- 
info. org.

The ADNI study was approved by the local Institu-
tional Review Board, and all participants signed the 
informed consent prior to the collection of data. The cur-
rent study was a cross-sectional design. After the pro-
cedure of genotyping, preprocessing, and segmentation, 
the scan which had technical failure during segmentation 
were excluded. We finally identified 410 participants 

http://www.adni-info.org
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in this research, including 239 MCI (131 female, 108 
male, 70.73 ± 7.11 years), 152 NC (92 female, 60 male, 
74.08 ± 7.15  years), and 19 AD (13 female, 6 male, 
74.65 ± 7.25 years). The chi-squared test showed no sig-
nificant difference on gender (p = 0.332) between the 
three clinical stages. All subjects were asked to complete 
the MoCA. Inclusion and clinical diagnosis criteria for 
ADNI have been described in the ADNI manual (www. 
adni- info. org.). The Mini-Mental State Exam (MMSE) 
score of AD subjects were measured in 20–26 (inclusive), 
Clinical Dementia Rating Scale (CDR) scores of 0.5 or 
1.0, and all subjects meet National Institute of Neurologi-
cal and Communicative Diseases and Stroke/Alzheimer's 
Disease and Related Disorders Association (NINCDS/
ADRDA) criteria for probable AD. MCI subjects had 
MMSE scores between 24 and 30 (inclusive), a memory 
complaint, have objective memory loss measured by edu-
cation adjusted scores on Wechsler Memory Scale Logi-
cal Memory II, a CDR of 0.5, the absence of significant 
levels of impairment in other cognitive domains, essen-
tially preserved activities of daily living, and the absence 
of dementia. NC subjects had MMSE scores between 24 
and 30 (inclusive), a CDR of 0, non-depressed, non-MCI, 
and nondemented.

Genotyping and SNP selection

Single-nucleotide polymorphism (SNP) genotypes of 
subjects were generated by BeadStudio 3.2 software 
(Illumina) and have been uploaded to the ADNI website 
(Saykin et al. 2010). PLINK 1.9 (http:// www. cog- genom 
ics. org/ plink/1. 9/) was used to quality controls (QC) and 
extract the information of selected SNP except ApoE 
(Purcell et al. 2007), since ApoE genotyping of partici-
pants had been done at the screening visit and uploaded 
to the website by ADNI, as described in previous publica-
tion (Saykin et al. 2010). The procedure of QC included 
the following criteria: Hardy–Weinberg equilibrium 
(HWE) > 0.001, minor allele frequencies (MAF) > 0.05, 
and minimum call rates > 0.95.

We ultimately selected 18 genetic loci which have been 
previously reported as risk factors for Alzheimer’s Disease 
(AD), including ApoE, BIN1-rs744373, CLU-rs7012010, 
PICALM-rs3851179, MS4A6A-rs920573, CR1-rs3818361, 
CR1-rs6691117, HLA-DRB1-rs9271246, EPHA1-
rs11771145, EPHA1-rs11767557, PTK2B-rs1879189, 
ABCA7-rs3764650, CD2AP-rs9296562, CD33-rs3865444, 
CD33-rs3826656, SORL1-rs2070045, NYAP1-rs12539172, 
MEF2C-rs190982(Wang et al. 2017; Karch and Goate 
2015; Bertram et al. 2008; Beecham et al. 2009; Ma et al. 
2014b; Liu et al. 2017; Kunkle et al. 2019). Details of the 
gene information are presented in Table 1.

MRI acquisition

The detail of MRI acquisition parameters has been described 
elsewhere (Jack et al. 2008). In brief, high-resolution 3D T1 
weighted MRI scans were acquired at multi-site, using 1.5 T 
MRI scanners (repetition time/echo time = 2400/1000 ms, 
flip angle = 8°, acquisition matrix size = 256 × 256 × 166, and 
reconstructed voxel resolution = 0.94 × 0.94 × 1.2  mm3). For 
now, MRI is still the most common and reliable method for 
detecting brain abnormalities. Multi-site has minimal impact 
on morphological analysis (Jovicich et al. 2013). ADNI has 
done a lot to enhance standardization across sites and plat-
forms of images acquired.

Segmentation of the lateral ventricles

First, the T1-weighted structural MRI of each subject were 
first linearly registered to the MNI152 space using FSL 
FLIRT (Smith et al. 2004), since FSL FLIRT has a much 
lower registration error rate on multi-site data and not 
affected by the signal-to-noise ratio (SNR) (Dadar et al. 
2018). Second, all registered images were segmented into 
gray matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF) using the CAT12 (http:// www. neuro. uni- jena. 
de/ cat/) within SPM12. Third, we applied the geodesic 
shooting algorithm (Ashburner and Friston 2011) to obtain 
a group-wise CSF template, which allowed us to extract the 

Table 1  Information of the selected SNP

SNP single-nucleotide polymorphism; Chr. chromosome; MAF minor 
allele frequencies

Gene SNP Chr. Position Major/
minor 
alleles

MAF

ApoE ε4
BIN1 rs744373 2 127894615 C/T 0.32
CLU rs7012010 8 27448729 T/C 0.30
PICALM rs3851179 11 85868640 G/A 0.35
MS4A6A rs920573 11 59924959 G/A 0.38
CR1 rs3818361 1 207784968 C/T 0.20

rs6691117 1 207782931 A/G 0.24
HLA-DRB1 rs9271246 6 32580084 G/A 0.24
EPHA1 rs11771145 7 143110762 G/A 0.37

rs11767557 7 143109139 T/C 0.19
PTK2B rs1879189 8 27198884 A/G 0.15
ABCA7 rs3764650 19 1046520 T/G 0.09
CD2AP rs9296562 6 47490193 A/G 0.41
CD33 rs3865444 19 51727962 G/T 0.27

rs3826656 19 51726613 A/G 0.25
SORL1 rs2070045 11 121448090 T/G 0.23
NYAP1 rs12539172 7 100091795 C/T 0.26
MEF2C rs190982 5 88223420 A/G 0.36

http://www.adni-info.org
http://www.adni-info.org
http://www.cog-genomics.org/plink/1.9/
http://www.cog-genomics.org/plink/1.9/
http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
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group-wise ventricular template based on the CSF template 
using Automatic Lateral Ventricle delineation (ALVIN) 
binary mask (Kempton et al. 2011). Fourth, we visually 
inspected the ventricular boundaries of binary ventricular 
template, and wrapped the ventricular template back to the 
individual space using the deformation matrices from the 
estimation of group-wise CSF template. Fifth, ventricular 
surface meshes were reconstructed according to the shape 
of each individual ventricular volumetric template. Then, the 
ventricular structures of each subject were segmented from 
the MRI data. All the segmentation steps after registration 
were completed in SPM, and the method was described in 
more comprehensive detail in previous studies (Dong et al. 
2020; Shi et al. 2015). In addition, total intracranial vol-
ume (TIV) and bilateral lateral ventricular volumes were 
obtained from MRI images via Freesurfer software (http:// 
surfer. nmr. mgh. harva rd. edu), which have been confirmed 
that has higher accuracy, good reproducibility, and sensitiv-
ity for automatically segmenting the volume of ventricle, 
especially in patients with AD (Kempton et al. 2011; Mayer 
et al. 2016).

Group‑wise ventricular surface morphometry 
analysis

To better explore the morphological changes of ventricu-
lar surface, we extracted several vertex-wise characteristics 
consisting of radial distance (RD), tensor-based morphom-
etry (TBM), multivariate TBM (mTBM), and RDMTBM 
(Zhang et al. 2016). The RD was defined as the shortest 
distance from each vertex to the medial axis (Thompson 
et al. 2004; Pizer et al. 1999), reflecting the morphological 
changes in thickness. Suppose � : S1 → S2 is a map from face 
S1 to S2. The derivative map d� is approximated by the linear 
map from one face 

[

v1, v2, v3
]

 to another face 
[

w1,w2,w3

]

 . 
Then, the Jacobian matrix J is discrete derivative map d� 
from a face on anatomical surface to a face on the parameter 
domain, which can be computed as (Wang et al. 2009; Yao 
et al. 2020):

The deformation tensor S is defined as (JTJ)1∕2 . Instead 
of analyzing shape change based on the eigenvalues of the 
deformation tensor, MTBM considered “Log-Euclidean met-
rics” of deformation tensor S (Arsigny et al. 2006) so that 
the transformed values form a vector space. MTBM can be 
easily computed using the standard formulae for Euclidean 
spaces, and has increased the statistical power (Shi et al. 
2013; Wang et al. 2010).

TBM was defined as 
√

detJ , which reflected the changes 
in local surface area. MTBM was expressed as log

√

JJT  and 
used to supplement the information of TBM. In addition, 

J =
[

w3 − w1,w2 − w1

][

v3 − v1, v2 − v1
]−1

RDMTBM was a synthesis of RD and MTBM information, 
but more details of this feature still need to be further explored.

The human ApoE gene has three polymorphic alleles, 
named E2, E4, and E4. The E4 of ApoE is the major genetic 
risk factor for AD (Lyall et al. 2016; O'Donoghue et al. 
2018), conversely, the E2 of ApoE has a protective effect 
against AD (Suri et al. 2013; Corder et al. 1994). After 
removing subjects carrying the ApoE E2E4 genotype, all 
subjects were divided into ApoE E4 carriers (E3E4, E4E4) 
and non-carriers (E2E3, E3E3). For the other genetic loci 
in this study, we assumed that minor allele frequencies from 
each SNP investigated were high-risk alleles. Due to the 
scarcity of homozygous for the minor allele, heterozygous 
and homozygous minor allele genotypes were combined 
as risk-allele carriers. We performed chi-squared test and 
two-sample t test on the risk-allele carriers and non-carriers 
based on each AD loci to analyze sex and age differences 
between the groups (As shown in eTable 1). In addition, 
two-sample t test was also used to analyze whether there is 
a significant difference in TIV between two groups. The ver-
tex-based morphological differences between the two groups 
were compared by Hotelling’s T2 test and permutation test 
was used to correct the multiple comparisons (Hotelling 
1992). First, we computed the Mahalanobis distance with 
true labels to quantify the difference between two groups 
on this vertex. Then, the surfaces were partitioned randomly 
into two groups with the same number of subjects in the true 
group and the Mahalanobis distance on each surface ver-
tex was re-computed. This process was repeated for 10,000 
times so that each vertex had 10,000 permutation values. 
The probability on each vertex was defined as ratio of the 
number of permutation values which were greater than the 
true group difference value. With these vertex-based prob-
abilities (p values), we can generate a p-map with significant 
morphological changes (uncorrected, Fig. 2). The features 
will be compared with the features derived from the random 
groupings, thus, we can obtain a ratio that describes the frac-
tion of the time an effect of similar or greater magnitude to 
the real effect occurs in the random assignments. This ratio 
reflects the global significance (corrected) of the p-map. 
Corrected P value < 0.05 was considered as significant.

In addition, to ensure an accurate reflection of the atro-
phy and expansion of each vertex, we used the following 
formula:

where Fk
1i

 and Fk
2j

 represent the feature of the i-th subject in 
group1 and j-th in group 2, such as RD, TBM, MTBM or 
RDMTBM. N1 and N2 are the number of group 1 and group 
2, while k represents the k-th vertex on the surface. Rk

> 0 
indicates that the k-th vertex on the ventricular surfaces of 

Rk =

∑N1

i
Fk
1i

N1

−

∑N2

j
Fk
2j

N2

,

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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risk-allele carriers was expanding compared to the risk-allele 
non-carriers, while Rk

< 0 indicates atrophy. There were 
21,760 and 23,584 vertexes for the left and right lateral ven-
tricles, respectively.

Correlation analysis between morphological 
features and MoCA subscales

MoCA is a widely used screening tool to detect the cognitive 
impairment of clinical populations, including visuospatial, 
orientation, language, attention, abstraction, naming, and 
delayed recall (Folstein et al. 1975). To evaluate the func-
tions of different subregions of lateral ventricle, Pearson cor-
relation analyses were performed for the RD of each vertex 
and the sub-scores of all participants, and only significant 
correlations (false discovery rate, FDR < 0.05) were consid-
ered. The correlation analysis for each scale was done sepa-
rately. The subregions and surrounding structure of lateral 
ventricle are shown in Fig. 1.

Results

Characteristics of subjects

The demographic characteristics of all subjects are shown 
in Table 2. The groupings based on each susceptibility loci 
were all gender- and age-matched (p > 0.05). There was also 
no significant difference between groups in TIV.

Impact of risk‑allele on ventricular volume

A significantly decreased ventricular volume was found only 
in the C allele carriers at BIN1 rs744373 loci when com-
pared with non-carriers, especially left ventricle. The same 
trends (not significant) were obtained in the AD, MCI, and 
NC group, respectively (Table 3). For other loci, ventricular 

Fig. 1  The surrounding structure and subregions of lateral ventricle. 
A, B The subcortical structure around the lateral ventricle, including 
hippocampus (blue), thalamus (green), and caudate nucleus (purple). 
C–F The four subregions of lateral ventricle. A anterior horn, B body, 
O occipital horn, T temporal horn, L left, R right

Table 2  Demographic information of participants

 ± : standard deviation
F female; M male; NC normal controls; MCI mild cognitive impairment; AD Alzheimer’s disease; MoCA Montreal Cognitive Assessment; LVV 
left lateral ventricular volume; RVV right lateral ventricular volume; TIV total intracranial volume

NC (n = 152) MCI (n = 239) AD (n = 19) Total (n = 410)

Gender (F/M) 92/60 131/108 13/6 236/174
Age 74.08 ± 7.15 70.73 ± 7.11 74.65 ± 7.253 72.15 ± 7.15
LVV 1.50 ×  104 ± 7.75 ×  103 1.69 ×  104 ± 1.02 ×  104 2.22 ×  104 ± 9.25 ×  103 1.62 ×  104 ± 9.45 ×  103

RVV 1.40 ×  104 ± 6.79 ×  103 1.53 ×  104 ± 9.23 ×  103 2.05 ×  104 ± 7.63 ×  103 1.51 ×  104 ± 8.42 ×  103

TIV 1.47 ×  106 ± 1.47 ×  105 1.49 ×  106 ± 1.98 ×  105 1.43 ×  106 ± 1.58 ×  105 1.48 ×  106 ± 1.79 ×  105

MoCA 24.42 ± 4.32 21.94 ± 4.31 16.05 ± 4.41 22.59 ± 4.30
Visuospatial 4.17 ± 0.92 3.62 ± 1.37 2.21 ± 1.40 3.76 ± 1.30
Naming 2.82 ± 0.47 2.69 ± 0.68 2.31 ± 0.89 2.72 ± 0.63
Attention 4.88 ± 0.89 4.28 ± 1.29 3.15 ± 1.34 4.45 ± 1.22
Language 2.35 ± 0.80 2.20 ± 0.90 1.00 ± 1.15 2.20 ± 0.92
Abstraction 1.79 ± 0.46 1.62 ± 0.64 0.84 ± 0.90 1.64 ± 0.62
Delayed recall 1.84 ± 1.78 1.22 ± 1.64 0.16 ± 0.69 1.40 ± 1.71
Orientation 5.71 ± 0.83 5.00 ± 1.66 2.53 ± 1.84 5.15 ± 1.56
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volume had a decreasing or increasing trend, but did not 
reach the significant level (Fig. 2). 

Ventricular morphometric differences 
between risk‑allele carriers and non‑carriers

To achieve a better understanding of the morphological 
changes of lateral ventricle, we analyzed the surface differ-
ences using the vertex-wise characteristics. The p-map of 
BIN1 rs744373 genotype on ventricular surface is shown in 
Fig. 3, which reflected the areas of significant abnormality 
caused by risk allele. Consistent with the results of volume, 
ventricular surface subregions of C allele carriers showed 
significant atrophy. As for the RD and TBM, the atrophy 
was mainly in the dorsolateral anterior horn and body of left 
lateral ventricle, with a few areas in occipital horn, and the 

difference in TBM was greater than RD (Fig. 3A,B). Other 
than that, the abnormal changes of mTBM/RDmTBM were 
concentrated on the temporal horn, dorsolateral of anterior 
horn, and a few areas in occipital horn (Fig. 3C, D).

Although trends of morphological changes are observed 
in other genetic loci, they did not pass the correction 
(overall p value > 0.05), including CD33 rs3865444, CLU 
rs7012010, PICALM rs3851179, CD2AP rs9296562, and 
PTK2B rs1879189. The results of this part of the study 
were not described here because they did not reach statisti-
cal significance.

Table 3  Differences of 
ventricular volume at the BIN1 
rs744373 loci

Bold values indicate significant difference between the two groups (p value < 0.05)
 ± : standard deviation
F female; M male; LVV left lateral ventricular volume; RVV right lateral ventricular volume; TIV total 
intracranial volume

BIN1 TT (n = 182) CT + CC (n = 197) P value

Age 72.53 ± 7.38 72.11 ± 6.9300 0.57
Gender (F/M) 105/77 112/85 0.87
LVV (Total) 1.77 ×  104 ± 1.06 ×  104 1.55 ×  104 ± 8.38 ×  103 0.02
RVV (Total) 1.60 ×  104 ± 9.00 ×  103 1.43 ×  104 ± 7.85 ×  103 0.04
LVV (AD) 2.31 ×  104 ± 9.76 ×  104 2.01 ×  104 ± 7.02 ×  103 0.49
RVV (AD) 2.07 ×  104 ± 7.53 ×  103 1.93 ×  104 ± 5.63 ×  103 0.68
LVV (MCI) 1.83 ×  104 ± 1.12 ×  104 1.62 ×  104 ± 9.49 ×  103 0.13
RVV (MCI) 1.63 ×  104 ± 1.00 ×  104 1.48 ×  104 ± 8.66 ×  103 0.24
LVV (NC) 1.61 ×  104 ± 9.20 ×  103 1.40 ×  104 ± 6.41 ×  103 0.09
RVV (NC) 1.50 ×  104 ± 7.06 ×  103 1.30 ×  104 ± 6.52 ×  103 0.07
TIV 1.49 ×  106 ± 1.96 ×  105 1.48 ×  106 ± 1.62 ×  105 0.51

Fig. 2  The mean lateral ventricular volume of each group. RVV 
right lateral ventricular volume; LVV left lateral ventricular vol-
ume; CD33_1: CD33(rs3865444); CD33_2: CD33(rs11771145); 

CR1_1: CR1(rs3818361); CR1_2: CR1(rs6691117); EPHA1_1: 
EPHA1(rs11771145); EPHA1_2: EPHA1(rs11767557). *Means sig-
nificant difference between risk-allele carriers and non-carriers
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Correlation between surface features of lateral 
ventricular subregions and cognitive subscales

The higher MoCA scores, the higher cognitive functional 
performance. After the correlation analysis, significant 
negative correlation between delayed recall score and RD 
was observed in most areas of bilateral ventricular surface 
(Fig. 4A). Results showed that language scores were sig-
nificantly negative correlated with RD in the right temporal 
horn, as well as visuospatial scores in trigone area of the 
left lateral ventricle (Fig. 4B, D). Apart from this, A signifi-
cant negative correlation was found between the orientation 
scores and morphological feature of body, occipital horn, 

and temporal horn of left lateral ventricle (Fig. 4C). For the 
total score of MoCA, significant negative correlations were 
found in body, occipital horn, and temporal horn of bilateral 
lateral ventricle (Fig. 4E). RD showed no significantly cor-
related with attention, abstraction, and naming scores.

Discussion

We evaluated the association between 18 AD susceptibility 
loci and surface morphology of the lateral ventricle. The 
surrounding parenchymal areas that can be involved in cog-
nition functions were firstly reported in our research. Our 

Fig. 3  P-map of BIN1 rs744373 
genotype on lateral ventricular 
surface. The overall corrected 
p values of right ventricular 
were all > 0.05, and the overall 
corrected p values of RD, TBM, 
mTBM, and RDmTBM of left 
ventricular were 0.0546, 0.0283, 
0.0087, and 0.0113, indicating 
significant changes in left lateral 
ventricle. The warm and cool 
color each represents the expan-
sion (risk-allele carriers > risk-
allele non-carriers) and atrophy 
(risk-allele carriers < risk-allele 
non-carriers) of ventricular 
surfaces. L left; R right

Fig. 4  Correlations between ventricular surface morphological feature and MoCA, subscales, respectively (FDR < 0.05). Warm colors represent 
positive correlations and cool colors represent negative correlations. MoCA Montreal Cognitive Assessment; L left; R right
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results showed that only the lateral ventricular morphology 
of C allele carriers at BIN1 rs744373 loci were significantly 
different from non-carriers, as well as the cognitive scales 
were significantly associated with ventricular surface met-
ric. The current findings provided important evidence for 
the limited effects of AD risk genes on the lateral ventricle.

Consistent with previous study(Nestor et al. 2008), our 
results showed that AD patients had the largest ventricu-
lar volume, followed by MCI and then for NC (Table 2), 
which reflected that lateral ventricle had a progressive 
expansion of volume with the development of AD. Risk 
genes were related to the increased AD incidence and could 
cause abnormal expansion of ventricle in the elderly (Karch 
and Goate 2015; Roussotte et al. 2014b; Erten-Lyons et al. 
2013), which was mainly due to the atrophy of the subcorti-
cal structures around the lateral ventricles, including hip-
pocampal (Stoub et al. 2010), thalamus (Zarei et al. 2010), 
and caudate nucleus (Madsen et al. 2010), etc. Nevertheless, 
the atrophy of ventricular surface was observed in C allele 
carriers at the SNP rs744373.

Lateral ventricle is adjacent to several AD-related brain 
structures, including hippocampus, thalamus, caudate 
nucleus, and corpus callosum (Fig. 1), thus, ventricle and 
surrounding structures have an ability to influence each other 
reciprocally(Tang et al. 2014; Shi et al. 2015). In contrast 
to the ApoE and CLU rs11136000, carriers of the C risk 
allele at rs744373 showed significant atrophy in temporal 
horn and dorsolateral of anterior horn/body (Fig. 3), as well 
as the volume of C allele carriers was significantly reduced 
(Table 3), which implying that the surrounding subcorti-
cal structures had not yet significantly atrophy. It is well 
known that some known AD risk allele (ApoE E4, C allele at 
CLU rs11136000, etc.) accelerate the atrophy of AD-related 
biomarker and cognitive decline (Roussotte et al. 2014b; 
An et al. 2021). Therefore, the atrophy of lateral ventricle 
may reflect the protective role of this locus for brain atro-
phy. The temporal horn locates in the dorsolateral area of 
hippocampus, and prior research had found that healthy 
homozygous carriers of the risk allele at rs744373 showed 
significantly increased gray matter volume (GMV) in the 
bilateral temporal cortex, including hippocampus, amygdala, 
and parahippocampal gyrus (Zhang et al. 2015). Genetic 
factors could affect white matter density of the corpus cal-
losum (Pol et al. 2006), which was above the dorsolateral of 
anterior horn, body, and occipital horn (Karakaş et al. 2011), 
so perhaps C allele at rs744373 suppress the atrophy of the 
bottom of corpus callosum. The most likely explanation for 
the decreased lateral ventricular volume was the compensa-
tory recruitment of neural resources, which could help AD 
patients to maintain a certain level of cognitive performance 
(Buckner 2004). Increased recruitment is a compensatory 
response to maintain cognitive function. Brain atrophy and 
cognitive decline in AD patients are undoubtedly an intricate 

process, including vascular compromise, amyloid deposits, 
neuron loss, and neurotransmitter depletion (Buckner 2004), 
etc. BIN1 is located on chromosome 2q, has been identi-
fied as the second most important locus for AD, after ApoE 
(Tan et al. 2013). It also plays a role in the regulation of tau 
pathology, amyloid-β peptide (Aβ), apoptosis, and cytoskel-
eton integrity (Franzmeier et al. 2019), The levels of tau and 
Aβ were all reported to be related to the ventricular volume 
(Ott et al. 2010). Meanwhile, one study mentioned BIN1 has 
a specific role in postsynaptic sites in the brain, leading to 
an increase in pCaMKII cluster volume as a compensatory 
response to presynaptic changes (De Rossi et al. 2020).

ApoE, BIN1, CLU, PICALM, and CR1 were five most 
widely studied AD susceptibility loci in neuroimaging. For 
the association between susceptibility loci and ventricular 
surface morphology, except for BIN1 rs744373, other loci 
did not pass the correction in our study (Fig. 2). However, 
this does not necessarily indicate that other susceptibility 
loci have no effect on the changes in lateral ventricle, per-
haps due to the cross-sectional data and the insufficient sta-
tistical power to detect subtle differences in surface. In par-
ticular, the number of minor allele homozygous subjects was 
relatively small. The enlargement of lateral ventricle volume 
is known to be a consequence of multiple risk factors rather 
than a single cause, such as dietary cholesterol (Schreurs 
et al. 2013) and systemic inflammation (Walker et al. 2017).

MoCA total score reflects the cognitive profiles of par-
ticipant (Freitas et al. 2012). The cognitive function was pri-
marily associated with the bilateral occipital horns (Fig. 4E) 
adjacent to the hippocampus, which is the most affected 
structure of brain in AD patients (den Heijer et al. 2010). 
Impaired memory is a typical symptom of AD. Our results 
suggested that delayed recall function was associated with 
the whole lateral ventricle, particularly in anterior horn and 
body (Fig. 4A), which was an indirect proof of the relation-
ship between memory and hippocampus, thalamus, caudate, 
corpus callosum, respectively(Preston and Eichenbaum 
2013; O’Mara 2013; Stoffers et al. 2014; Qiu et al. 2016). 
In term of the language function, only the temporal horn of 
right ventricle exhibited significant correlation (Fig. 4B). In 
addition, for visuospatial function, the trigone area of the 
left lateral ventricle showed a strong association (Fig. 4D), 
adjacent to the motor and sensory centers in the parietal lobe 
(Ma et al. 2014a). Smaller areas of body, occipital horn and 
temporal horn of left lateral ventricle were related to the 
orientation function (Fig. 4C). Apart from delayed recall, 
AD patients also showed variable degrees of impairments 
in language, visuospatial, and orientation domains (Cloutier 
et al. 2015). These results may further prove that surround-
ing structures were crucial for cognitive function.

The current study had several potential limitations. First, 
and as stated, this study was cross-sectional, which could 
not evaluate the long-term impact of risk allele. Previous 
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related studies of ApoE and CLU observed significant effects 
on lateral ventricular surface morphology at the 24-month 
follow-up (Roussotte et al. 2014a, b), so the longitudinal 
study may reveal the effects of other loci. Second, we could 
not determine if the effect of these genes were additive or 
interactive. Our study focused on the single variant, while 
ignoring the complex interactions between genes. Third, 
previous studies have mentioned that there is no significant 
correlation between head movement and voxel-based mor-
phology, subcortical structures segmentation, respectively 
(Cole et al. 2017; Pardoe et al. 2016), but we think it is 
necessary to introduce accurately measured head motion 
parameters into the analysis process. We did not consider 
the subject motion in our analysis due to a lack of data on 
level of motion. Finally, the relatively small sample size may 
restrict the generalizability of the results. Our conclusion 
should be validated in other larger databases, such as UK 
Biobank (Sudlow et al. 2015), ENIGMA (Thompson et al. 
2014) and NDAR (Hall et al. 2012).

In conclusion, our present study revealed that in the 18 
AD susceptibility loci, only BIN1 rs744373 had a signifi-
cant impact on the ventricular surface. There is not always a 
direct relationship between genes and brain changes, but was 
conducted by multiple risk factors with complex mechanism. 
In addition, we found that different subregions of lateral ven-
tricle were related to various cognitive functions, including 
delayed recall, orientation, language, and visuospatial. The 
current finding provided evidence for the underlying mecha-
nisms of BIN1, and altered surface morphology of lateral 
ventricle contributed to the study about the surrounding 
brain structures to search for the reliable biomarkers of AD.
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